Skip to main content

Gene Collection (#5)

"Unlocking the Secrets of Life: Exploring the Fascinating World of Gene" Genes, those tiny but mighty units of heredity encoded in our DNA

Background imageGene Collection: Valyl-tRNA synthetase molecule F006 / 9342

Valyl-tRNA synthetase molecule F006 / 9342
Valyl-tRNA synthetase protein molecule. Molecular model showing bacterial valyl-tRNA synthetase complexed with valyl tRNA (transfer ribonucleic acid)

Background imageGene Collection: Isoleucyl-tRNA synthetase molecule F006 / 9329

Isoleucyl-tRNA synthetase molecule F006 / 9329
Isoleucyl-tRNA synthetase protein molecule. Molecular model showing bacterial isoleucyl-tRNA synthetase complexed with aspartyl tRNA (transfer ribonucleic acid)

Background imageGene Collection: E coli Holliday junction complex F006 / 9261

E coli Holliday junction complex F006 / 9261
E. coli Holliday junction complex. Molecular model of a RuvA protein (red) in complex with a Holliday junction between homologous strands of DNA (deoxyribonucleic acid, blue) from an E

Background imageGene Collection: Aspartyl-tRNA synthetase molecule F006 / 9238

Aspartyl-tRNA synthetase molecule F006 / 9238
Aspartyl-tRNA synthetase protein molecule. Molecular model showing bacterial aspartyl-tRNA synthetase complexed with aspartyl tRNA (transfer ribonucleic acid)

Background imageGene Collection: Zinc finger bound to DNA

Zinc finger bound to DNA. Molecular model showing a zinc finger molecule bound (orange) to a strand of DNA (deoxyribonucleic acid, pink and green)

Background imageGene Collection: Roundworm germ cells, light micrograph C016 / 9538

Roundworm germ cells, light micrograph C016 / 9538
Roundworm germ cells. Light micrograph of germ cells from a roundworm (Ascaris sp.), undergoing mitosis (nuclear division)

Background imageGene Collection: Genetic fingerprints, conceptual artwork C016 / 7521

Genetic fingerprints, conceptual artwork C016 / 7521
Genetic fingerprints, conceptual computer artwork

Background imageGene Collection: DNA molecule, artwork C016 / 8892

DNA molecule, artwork C016 / 8892
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: Tumour suppressor protein and DNA C016 / 6264

Tumour suppressor protein and DNA C016 / 6264
Tumour suppressor protein and DNA. Computer artwork showing a molecule of the tumour suppressor protein p53 (blue and green) bound to a strand of DNA (deoxyribonucleic acid, grey)

Background imageGene Collection: Oncogenes, artwork C016 / 6262

Oncogenes, artwork C016 / 6262
Oncogenes. Computer artwork comparing the DNA (deoxyribonucleic acid, coiled strand) of a normal cell (top) with that of a cancer cell (bottom)

Background imageGene Collection: DNA repair, illustration C018 / 0782

DNA repair, illustration C018 / 0782
DNA repair. Illustation of a DNA (deoxyribonucleic acid) ligase enzyme (upper centre) repairing damaged DNA (spiral)

Background imageGene Collection: Tumour suppressor protein and DNA C017 / 3643

Tumour suppressor protein and DNA C017 / 3643
Tumour suppressor protein and DNA. Computer artwork showing a molecule of the tumour suppressor protein p53 (blue and pink) bound to a molecule of DNA (deoxyribonucleic acid, yellow and orange)

Background imageGene Collection: Homeodomain from Ubx and Exd protein C017 / 7006

Homeodomain from Ubx and Exd protein C017 / 7006
Structure of a DNA-bound Ultrabithorax (Ubx) and Extradenticle (Exd) homeodomain complex bound to DNA, showing how one of the helical regions fits into a major groove on the doulbe-helical DNA

Background imageGene Collection: DNA components, artwork C017 / 7349

DNA components, artwork C017 / 7349
DNA components. Computer artwork showing the structure of the two molecules that make up the backbone of DNA (deoxyribonucleic acid), phosphate (left) and deoxyribose (right)

Background imageGene Collection: Aspartyl-tRNA synthetase protein molecule C014 / 0874

Aspartyl-tRNA synthetase protein molecule C014 / 0874
Aspartyl-tRNA synthetase protein molecule. Molecular model showing the structure of the active site of aspartyl-tRNA synthetase (DARS) from yeast

Background imageGene Collection: Genetic research, conceptual image C014 / 1255

Genetic research, conceptual image C014 / 1255
Genetic research. Conceptual image of a molecular model of a strand of DNA (deoxyribonucleic acid) being examined through a magnifying glass

Background imageGene Collection: E. coli Holliday junction complex

E. coli Holliday junction complex. Molecular model of a RuvA protein (red) in complex with a Holliday junction between homologous strands of DNA (deoxyribonucleic acid, brown and orange) from an E

Background imageGene Collection: Methyladenine glycosylase bound to DNA C014 / 0877

Methyladenine glycosylase bound to DNA C014 / 0877
Methyladenine glycosylase bound to DNA. Computer model showing a molecule of human DNA-3-methyladenine glycosylase (purple) in complex with DNA (deoxyribonucleic acid, green and orange)

Background imageGene Collection: Methyladenine glycosylase bound to DNA

Methyladenine glycosylase bound to DNA. Computer model showing a molecule of human DNA-3-methyladenine glycosylase (purple) in complex with DNA (deoxyribonucleic acid, blue and orange)

Background imageGene Collection: Zinc finger bound to DNA C014 / 0864

Zinc finger bound to DNA C014 / 0864
Zinc finger bound to DNA. Molecular model showing a zinc finger molecule bound to a strand of DNA (deoxyribonucleic acid)

Background imageGene Collection: Nucleic acid isolation resin, SEM C014 / 4732

Nucleic acid isolation resin, SEM C014 / 4732
Nucleic acid isolation resin. Coloured scanning electron micrograph (SEM) showing the structure of a silica (silicon dioxide) resin from a spin column

Background imageGene Collection: Gene switching, artwork

Gene switching, artwork
Gene switching, computer artwork. Coloured dots on a DNA helix, representing the process of switching specific genes on or off

Background imageGene Collection: Glutaminyl-tRNA synthetase molecule

Glutaminyl-tRNA synthetase molecule
Glutaminyl-tRNA synthetase protein molecule. Molecular model showing bacterial glutaminyl-tRNA synthetase complexed with glutamine tRNA (transfer ribonucleic acid)

Background imageGene Collection: DNA molecule, artwork C016 / 8508

DNA molecule, artwork C016 / 8508
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8507

DNA molecule, artwork C016 / 8507
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8506

DNA molecule, artwork C016 / 8506
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8505

DNA molecule, artwork C016 / 8505
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8503

DNA molecule, artwork C016 / 8503
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8502

DNA molecule, artwork C016 / 8502
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8501

DNA molecule, artwork C016 / 8501
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8499

DNA molecule, artwork C016 / 8499
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8498

DNA molecule, artwork C016 / 8498
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8442

DNA molecule, artwork C016 / 8442
DNA molecule. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8443

DNA molecule, artwork C016 / 8443
DNA molecule. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8441

DNA molecule, artwork C016 / 8441
DNA molecule. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8440

DNA molecule, artwork C016 / 8440
DNA molecule. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: Chromosome of supercoiled DNA, concept C016 / 8434

Chromosome of supercoiled DNA, concept C016 / 8434
Chromosome of supercoiled DNA, conceptual image. Computer artwork of a human chromosome, representing how DNA (deoxyribonucleic acid) is supercoiled (spirals) to be packaged within it

Background imageGene Collection: DNA molecule, artwork C016 / 8439

DNA molecule, artwork C016 / 8439
DNA molecule. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8438

DNA molecule, artwork C016 / 8438
DNA molecule. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA molecule, artwork C016 / 8437

DNA molecule, artwork C016 / 8437
DNA molecule. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: Chromosome of supercoiled DNA, concept C016 / 8433

Chromosome of supercoiled DNA, concept C016 / 8433
Chromosome of supercoiled DNA, conceptual image. Computer artwork of a human chromosome, representing how DNA (deoxyribonucleic acid) is supercoiled (spirals) to be packaged within it

Background imageGene Collection: Chromosome as a machine, conceptual image C016 / 8432

Chromosome as a machine, conceptual image C016 / 8432
Chromosome as a machine, conceptual image. Computer artwork of a human chromosome made out of machine parts. Chromosomes are composed of deoxyribonucleic acid (DNA) strands that contain sections

Background imageGene Collection: DNA molecule, artwork C016 / 8273

DNA molecule, artwork C016 / 8273
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageGene Collection: DNA gene switch circuit board

DNA gene switch circuit board. Computer artwork of a molecule of DNA (deoxyribonucleic acid) with gene switches integrated into a printed circuit board

Background imageGene Collection: DNA Holliday junction, molecular model C014 / 3090

DNA Holliday junction, molecular model C014 / 3090
DNA Holliday junction. Molecular model of a Holliday junction (centre) between homologous strands of DNA (deoxyribonucleic acid)

Background imageGene Collection: Poly(A)-binding protein and RNA complex

Poly(A)-binding protein and RNA complex. Computer model showing the structure of a poly(A)-binding protein (PABP) molecule bound to the poly(A)

Background imageGene Collection: Mendelian inheritance, artwork

Mendelian inheritance, artwork
Mendelian inheritance. Computer artwork showing the possible genetic outcomes for the offspring of parents that are both heterozygous (have two different alleles, or forms)

Background imageGene Collection: Z-DNA tetramer molecule C015 / 6558

Z-DNA tetramer molecule C015 / 6558
Z-DNA (deoxyribonucleic acid) tetramer, molecular model. DNA is composed of two strands twisted into a double helix. This is a tetramer of the molecule, containing four strands




For sale as Licensed Images

Choose your image, Select your licence and Download the media

"Unlocking the Secrets of Life: Exploring the Fascinating World of Gene" Genes, those tiny but mighty units of heredity encoded in our DNA, hold the key to understanding life's intricate mysteries. Like X and Y chromosomes that determine our gender, genes shape who we are at a fundamental level. Just like the majestic Leopard donning its melanistic phase as a black panther resting on a log, genes dictate our physical traits and characteristics. They orchestrate every aspect of our being, from eye color to height. The DNA molecule stands as an elegant blueprint for life itself. Its complex structure reveals the code that makes us unique individuals. A computer model visualizes this intricate dance within our cells, showcasing how genes interact with one another to create a symphony of existence. In abstract images and artwork inspired by the DNA molecule, we witness its beauty and complexity intertwined. Just like Gene Tunney going down for the famous long count in his championship bout with Dempsey, they can sometimes surprise us with their unpredictable nature. Gene Tierney's timeless elegance reminds us that genes not only shape our physical appearance but also influence aspects such as talent and charisma. They play a role behind every star's success story. Gregor Mendel, an Austrian botanist known as "the father of genetics, " laid the foundation for understanding how traits are inherited through his groundbreaking experiments with pea plants. His work paved the way for unraveling gene inheritance patterns across species. Much like a King cheetah coat displaying rare genetic variations due to specific gene combinations, nature constantly surprises us with its diversity driven by these incredible building blocks called genes. Scenes from Madame Sans-Gene starring Gloria Swanson remind us that while some aspects may be predetermined by our genetic makeup, it is ultimately up to each individual to define their own destiny beyond what lies within their genes' reach. From ancient times till now - whether it be in the form of a Panthera pardus or an American boxer.