Skip to main content

Molecular Model Collection (page 2)

Molecular models offer a glimpse into the intricate world of science and medicine, revealing the hidden secrets of life at a microscopic level

Background imageMolecular Model Collection: DNA strands, illustration

DNA strands, illustration
DNA strands. Computer illustration showing the structure of double stranded DNA (deoxyribonucleic acid) molecules. DNA is composed of two strands twisted into a double helix

Background imageMolecular Model Collection: Reaction of hydrogen and oxygen to water C017 / 3598

Reaction of hydrogen and oxygen to water C017 / 3598
Reaction of hydrogen and oxygen to water. Computer artwork of a balanced chemical equation showing how two hydrogen (H2, white) molecules (left) combine with a single oxygen (O2)

Background imageMolecular Model Collection: Argonaute protein molecule F006 / 9526

Argonaute protein molecule F006 / 9526
Argonaute protein, molecular model. This protein forms the RNA-induced silencing complex (RISC) along with a small interfering RNA (ribonucleic acid) molecule

Background imageMolecular Model Collection: TFAM transcription factor bound to DNA C015 / 7059

TFAM transcription factor bound to DNA C015 / 7059
TFAM transcription factor bound to DNA, molecular model. Human mitochondrial transcription factor A (TFAM, green) bound to a strand of DNA (deoxyribonucleic acid, blue and pink)

Background imageMolecular Model Collection: Rhinovirus and antibody, molecular model C015 / 7139

Rhinovirus and antibody, molecular model C015 / 7139
Rhinovirus. Molecular model of the antigen-binding fragment (Fab) from a strongly neutralising antibody bound to a human rhinovirus 14 (HRV-14) particle

Background imageMolecular Model Collection: Nitrogen molecule

Nitrogen molecule. Computer model of a molecule of nitrogen (N2). The two nitrogen atoms are joined by a covalent triple bond. Nitrogen is a colourless gas at room temperature

Background imageMolecular Model Collection: DNA structure, artwork C017 / 7218

DNA structure, artwork C017 / 7218
DNA structure. Computer artwork showing the structure of a double stranded DNA (deoxyribonucleic acid) molecule (right) and its components (left)

Background imageMolecular Model Collection: Aspartic molecule

Aspartic molecule
Aspartic acid molecule. Alpha-amino acid nonessential in mammals. Precursor to several amino acids including methionine, threonine, isoleucine and lysine

Background imageMolecular Model Collection: Serine molecule

Serine molecule
Serine, molecular model. Non-essential proteinogenic amino acid. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green), nitrogen (blue) and oxygen (red)

Background imageMolecular Model Collection: Teriflunomide multiple sclerosis drug F007 / 0193

Teriflunomide multiple sclerosis drug F007 / 0193
Teriflunomide multiple sclerosis drug, molecular model. Atoms are represented as spheres and are colour-coded: hydrogen (white), carbon (grey), oxygen (red), fluorine (dark yellow) and nitrogen (blue)

Background imageMolecular Model Collection: Argonaute protein and microRNA F006 / 9752

Argonaute protein and microRNA F006 / 9752
Argonaute protein. Molecular model of human argonaute-2 protein complexed with microRNA (micro ribonucleic acid). This protein is part of the RNA-induced silencing complex (RISC)

Background imageMolecular Model Collection: Immunoglobulin G antibody and egg white F006 / 9682

Immunoglobulin G antibody and egg white F006 / 9682
Immunoglobulin G and egg white. Molecular model of an immunoglobulin G (IgG) antibody bound to a molecule of egg white. This is the most abundant immunoglobulin and is found in all body fluids

Background imageMolecular Model Collection: Cytochrome P450 complex F006 / 9669

Cytochrome P450 complex F006 / 9669
Cytochrome P450 complex. Molecular model of a complex composed of cytochrome P450, carbon monoxide and camphor. Cytochrome molecules perform oxidation and reduction reactions for electron transport

Background imageMolecular Model Collection: Succinyl-CoA synthetase enzyme F006 / 9592

Succinyl-CoA synthetase enzyme F006 / 9592
Succinyl-CoA synthetase bound to GTP, molecular model. Also known as succinyl coenzyme A synthetase (SCS), this enzyme catalyses the reversible reaction between succinyl-CoA and succinic acid

Background imageMolecular Model Collection: RNA-induced silencing complex F006 / 9586

RNA-induced silencing complex F006 / 9586
RNA-induced silencing complex (RISC), molecular model. This complex consists of a bacterial argonaute protein (top) bound to a small interfering RNA (siRNA) molecule (red and blue)

Background imageMolecular Model Collection: Foot-and-mouth disease virus F006 / 9556

Foot-and-mouth disease virus F006 / 9556
Foot-and-mouth disease virus. Molecular model of the foot-and-mouth disease (FMD) virus (Aphtae epizooticae) protein coat (capsid)

Background imageMolecular Model Collection: Adenovirus penton base protein F006 / 9542

Adenovirus penton base protein F006 / 9542
Adenovirus penton base protein, molecular model. This protein molecule is a subunit called a penton, forming the vertices of the capsid of this adenovirus

Background imageMolecular Model Collection: Rhinovirus 16 capsid, molecular model F006 / 9431

Rhinovirus 16 capsid, molecular model F006 / 9431
Rhinovirus 16 capsid, molecular model. This is human rhinovirus 16. The rhinovirus infects the upper respiratory tract and is the cause of the common cold. It is spread by coughs and sneezes

Background imageMolecular Model Collection: Citrate acid cycle enzyme F006 / 9305

Citrate acid cycle enzyme F006 / 9305
Citrate acid cycle enzyme. Molecular model of the enzyme dihydrolipoamide succinyltransferase. This enzyme is involved in the citric acid (or Krebs) cycle

Background imageMolecular Model Collection: Chlorine molecule C017 / 3601

Chlorine molecule C017 / 3601
Chlorine molecule. Computer artwork showing the structure of a molecule of chlorine (Cl2). Atoms are colour coded: chlorine (green), with the bonds between them as bars (grey)

Background imageMolecular Model Collection: Pyruvate dehydrogenase complex C018 / 9192

Pyruvate dehydrogenase complex C018 / 9192
Pyruvate dehydrogenase complex, 3D model. This enzyme complex is responsible for the step that links glycolysis to the citric acid (Krebs) cycle

Background imageMolecular Model Collection: Rhinovirus and antibody, molecular model C015 / 7138

Rhinovirus and antibody, molecular model C015 / 7138
Rhinovirus. Molecular model of the antigen-binding fragment (Fab) from a strongly neutralising antibody bound to a human rhinovirus 14 (HRV-14) particle

Background imageMolecular Model Collection: Valproic acid anticonvulsant molecule C014 / 2296

Valproic acid anticonvulsant molecule C014 / 2296
Valproic acid. Molecular model of the anticonvulsant and mood-stabilising drug valproic acid. It is used to treat epilepsy, seizures, bipolar disorder and depression

Background imageMolecular Model Collection: MscL ion channel protein structure

MscL ion channel protein structure. Molecular model showing the protein structure of a Mechanosensitive Channel of Large Conductance (MscL) from a Mycobacterium tuberculosis bacterium

Background imageMolecular Model Collection: Immunoglobulin A, molecular model

Immunoglobulin A, molecular model
Immunoglobulin A. Molecular model of the structure of the antibody immunoglobulin A (IgA). This is the secretory dimeric form (sIgA), the main immunoglobulin found in secretions such as saliva

Background imageMolecular Model Collection: Adenovirus hexon protein

Adenovirus hexon protein, molecular model. Hexon proteins are part of the protein coat or shell (capsid) of adenoviruses. In viruses

Background imageMolecular Model Collection: Dopamine receptor D3 C016 / 4464

Dopamine receptor D3 C016 / 4464
D(3) dopamine receptor is a protein that in humans is encoded by the DRD3 gene.This gene encodes the D3 subtype of the dopamine receptor

Background imageMolecular Model Collection: Coagulation factor complex molecule C014 / 0139

Coagulation factor complex molecule C014 / 0139
Coagulation factor complex molecule. Molecular model showing the interaction between coagulation factor VIII (FVIII, pink, blue and yellow) and factor IXa (FIXa, cream and grey)

Background imageMolecular Model Collection: Cucumber mosaic virus, computer model

Cucumber mosaic virus, computer model
Cucumber mosaic virus (CMV), computer model. This image was created using molecular modelling software and data from X-ray crystallography

Background imageMolecular Model Collection: Murine norovirus with antibody fragments

Murine norovirus with antibody fragments
Murine norovirus (MNV) with antibody fragments, computer model. This image was created using molecular modelling software and data from cryo- electron microscopy

Background imageMolecular Model Collection: Biohazard symbol and virus

Biohazard symbol and virus. Computer artwork of the symbol for a biohazard (red) superimposed on a virus (blue). A biohazard is an organism or biological substance that is harmful to human health

Background imageMolecular Model Collection: Acetic acid molecule

Acetic acid molecule
Acetic acid, molecular model. Acetic acid, also called ethanoic acid, is the component of vinegar that gives it its sour taste and pungent smell

Background imageMolecular Model Collection: Parathyroid hormone molecule

Parathyroid hormone molecule. Computer model showing the structure of parathyroid hormone (PTH), or parathormone. Atoms are colour-coded (carbon: dark grey, hydrogen: light grey, oxygen: red)

Background imageMolecular Model Collection: Ghrelin hormone molecule

Ghrelin hormone molecule. Computer model showing the crystal structure of the human hormone ghrelin. The crystal structure consists of both the secondary structure

Background imageMolecular Model Collection: Alanine, molecular model

Alanine, molecular model
Alanine. Molecular model of the amino acid alanine. Its chemical formula is C3.H7.N.O3. Atoms are represented as balls and are colour-coded: carbon (blue), hydrogen (gold)

Background imageMolecular Model Collection: Tumour suppressor protein and DNA C017 / 3647

Tumour suppressor protein and DNA C017 / 3647
Tumour suppressor protein and DNA. Computer artwork showing a molecule of the tumour suppressor protein p53 (blue and pink) bound to a molecule of DNA (deoxyribonucleic acid, yellow and orange)

Background imageMolecular Model Collection: Ricin A-chain, artwork C017 / 3653

Ricin A-chain, artwork C017 / 3653
Ricin A-chain. Computer artwork showing the enzymatically active A-chain from a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (seen here) and B (not shown)

Background imageMolecular Model Collection: TATA box-binding protein complex C017 / 7082

TATA box-binding protein complex C017 / 7082
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageMolecular Model Collection: Water molecule C017 / 3605

Water molecule C017 / 3605
Water molecule. Computer artwork showing the structure of a molecule of water (H2O). Atoms are colour coded: oxygen (red) and hydrogen (white), with the bonds between them as bars (grey)

Background imageMolecular Model Collection: Antibiotic resistance enzyme molecule C017 / 2272

Antibiotic resistance enzyme molecule C017 / 2272
Antibiotic resistance enzyme. Molecular model of the New Delhi metallo-beta-lactamase 1 enzyme. This bacterial enzyme confers antibiotic resistance on cells that carry it

Background imageMolecular Model Collection: DNA molecule, artwork C017 / 7217

DNA molecule, artwork C017 / 7217
DNA molecule. Computer artwork showing a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageMolecular Model Collection: DNA molecule, artwork C017 / 0616

DNA molecule, artwork C017 / 0616
DNA molecule. Computer artwork looking along the interior of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageMolecular Model Collection: TATA box-binding protein complex C017 / 7088

TATA box-binding protein complex C017 / 7088
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageMolecular Model Collection: Ricin molecule, artwork C017 / 3652

Ricin molecule, artwork C017 / 3652
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageMolecular Model Collection: DNA molecule, artwork C017 / 0615

DNA molecule, artwork C017 / 0615
DNA molecule. Computer artwork looking along the interior of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageMolecular Model Collection: DNA molecule, artwork C017 / 0617

DNA molecule, artwork C017 / 0617
DNA molecule. Computer artwork looking along the interior of a double stranded DNA (deoxyribonucleic acid) molecule. DNA is composed of two strands twisted into a double helix

Background imageMolecular Model Collection: Sulphur dioxide molecule, artwork C017 / 3617

Sulphur dioxide molecule, artwork C017 / 3617
Sulphur dioxide molecule. Computer artwork showing the structure of a molecule of sulphur dioxide (SO2). Atoms are colour coded: sulphur (yellow) and oxygen (red)

Background imageMolecular Model Collection: Antibiotic resistance enzyme molecule C017 / 2271

Antibiotic resistance enzyme molecule C017 / 2271
Antibiotic resistance enzyme. Molecular model of the New Delhi metallo-beta-lactamase 1 enzyme. This bacterial enzyme confers antibiotic resistance on cells that carry it




For sale as Licensed Images

Choose your image, Select your licence and Download the media

Molecular models offer a glimpse into the intricate world of science and medicine, revealing the hidden secrets of life at a microscopic level. In one captivating image, an anaesthetic molecule is seen inhibiting an ion channel C015/6718, unlocking new possibilities for pain management. Another striking model showcases the complex structure of a double-stranded RNA molecule, shedding light on its crucial role in gene regulation and viral defense mechanisms. Delving deeper into genetics, we explore DNA transcription through a mesmerizing molecular model that unravels the intricate process of genetic information transfer. The spotlight then shifts to Immunoglobulin G antibody molecules - powerful defenders against pathogens - as their elegant structures are unveiled with precision. From F007/9894 variant to artwork-inspired representations, these models showcase the diversity within our immune system's arsenal. Venturing beyond traditional boundaries, we encounter 2C-B psychedelic drug's molecular model – offering insights into its unique chemical composition and potential therapeutic applications. Art meets science once again as we marvel at an artistic interpretation showcasing secondary structures of proteins; highlighting their vital roles in cellular functions. Inorganic wonders take center stage with the perovskite crystal structure model – unveiling its remarkable properties that revolutionize solar energy technology. Returning to genetics, we witness a computer-generated DNA molecule model providing us with invaluable insights into our blueprint for life. The complexity continues with the intricately designed nucleosome molecule – unraveling how DNA is packaged within our cells' nucleus while maintaining accessibility for essential processes. Finally, awe-inspiring artwork captures antibodies' beauty and significance as they stand tall against invading antigens. These captivating molecular models serve as windows into worlds unseen by the naked eye; bridging gaps between scientific exploration and artistic expression. They inspire curiosity and ignite imagination while propelling breakthroughs in fields ranging from medicine to materials science.