Skip to main content

Ribonucleic Acid Collection (page 4)

"Unraveling the Secrets of Ribonucleic Acid: The Double-Stranded RNA Molecule" In the intricate world of molecular biology

Background imageRibonucleic Acid Collection: Bacteriophage RNA, molecular model

Bacteriophage RNA, molecular model
Bacteriophage RNA. Molecular model showing the structure of a loop of the genetic material RNA (ribonucleic acid) from a bacteriophage. Bacteriophages are viruses that infect bacteria

Background imageRibonucleic Acid Collection: Nucleic acid isolation resin, SEM C014 / 4732

Nucleic acid isolation resin, SEM C014 / 4732
Nucleic acid isolation resin. Coloured scanning electron micrograph (SEM) showing the structure of a silica (silicon dioxide) resin from a spin column

Background imageRibonucleic Acid Collection: Eukaryotic cell nucleus, artwork

Eukaryotic cell nucleus, artwork
Eukaryotic cell nucleus. Artwork of the internal structure and contents of the nucleus of a eukaryotic cell. The nucleus has been sectioned in half

Background imageRibonucleic Acid Collection: Influenza virus, artwork C016 / 8349

Influenza virus, artwork C016 / 8349
Influenza virus. Cut-away computer artwork of an influenza (flu) virus particle (virion). In each particles lipid envelope (green) are two types of protein spike, haemagglutinin (H)

Background imageRibonucleic Acid Collection: Influenza virus, artwork C016 / 8348

Influenza virus, artwork C016 / 8348
Influenza virus. Cut-away computer artwork of an influenza (flu) virus particle (virion). In each particles lipid envelope (green) are two types of protein spike, haemagglutinin (H)

Background imageRibonucleic Acid Collection: Influenza virus, artwork C016 / 8347

Influenza virus, artwork C016 / 8347
Influenza virus. Cut-away computer artwork of an influenza (flu) virus particle (virion). In each particles lipid envelope (green) are two types of protein spike, haemagglutinin (H)

Background imageRibonucleic Acid Collection: Influenza virus, artwork C016 / 8346

Influenza virus, artwork C016 / 8346
Influenza virus. Cut-away computer artwork of an influenza (flu) virus particle (virion). In each particles lipid envelope (green) are two types of protein spike, haemagglutinin (H)

Background imageRibonucleic Acid Collection: Influenza virus, artwork C016 / 8344

Influenza virus, artwork C016 / 8344
Influenza virus. Cut-away computer artwork of an influenza (flu) virus particle (virion). In each particles lipid envelope (green) are two types of protein spike, haemagglutinin (H)

Background imageRibonucleic Acid Collection: Influenza virus, artwork C016 / 8345

Influenza virus, artwork C016 / 8345
This image may not be used in educational posters Influenza virus. Cut-away computer artwork of an influenza (flu) virus particle (virion)

Background imageRibonucleic Acid Collection: Bacterial RNA plasmid loop-loop complex

Bacterial RNA plasmid loop-loop complex, molecular model. This strand of ribonucleic acid (RNA) is part of a plasmid, the loop of genetic material found in bacterial cells

Background imageRibonucleic Acid Collection: Ribosomal RNA-binding protein molecule

Ribosomal RNA-binding protein molecule. Computer model showing the structure of a ribosomal protein L9 (RPL9) molecule from Bacillus stearothermophilus bacteria

Background imageRibonucleic Acid Collection: Signal recognition particle RNA molecule

Signal recognition particle RNA molecule. Computer model showing the molecular structure of the 2 A structure of helix 6 of the human signal recognition particle (SRP) RNA (ribonucleic acid)

Background imageRibonucleic Acid Collection: Hepatitis D virus ribozyme complex

Hepatitis D virus ribozyme complex. Computer model showing an RNA (ribonucleic acid) strand from an Hepatitis delta (Hepatitis D) virus genomic ribozyme, complexed with a ribonucleoprotein

Background imageRibonucleic Acid Collection: Poly(A)-binding protein and RNA complex

Poly(A)-binding protein and RNA complex. Computer model showing the structure of a poly(A)-binding protein (PABP) molecule bound to the poly(A)

Background imageRibonucleic Acid Collection: NpmA methyltransferase C016 / 2031

NpmA methyltransferase C016 / 2031
NpmA methyltransferase, molecular model. Methyltransferase enzymes act to add methyl groups to nucleic acids such as DNA, a process called DNA methylation

Background imageRibonucleic Acid Collection: NpmA methyltransferase C016 / 2030

NpmA methyltransferase C016 / 2030
NpmA methyltransferase, molecular model. Methyltransferase enzymes act to add methyl groups to nucleic acids such as DNA, a process called DNA methylation

Background imageRibonucleic Acid Collection: Nucleus and endoplasmic reticulum C015 / 6797

Nucleus and endoplasmic reticulum C015 / 6797
Computer artwork showing part of a human or eukaryotic cell. In the middle the nucleus which has a membrane with nuclear pores. Inside the nucleus is the DNA

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C015 / 6793

Animal cell organelles, artwork C015 / 6793
Animal cell organelles. Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C015 / 6792

Animal cell organelles, artwork C015 / 6792
Animal cell organelles. Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Nucleus and endoplasmic reticulum C015 / 6783

Nucleus and endoplasmic reticulum C015 / 6783
Computer artwork showing part of a human or eukaryotic cell. In the middle the nucleus which has a membrane with nuclear pores. Inside the nucleus is the DNA

Background imageRibonucleic Acid Collection: Nucleus and endoplasmic reticulum C015 / 6782

Nucleus and endoplasmic reticulum C015 / 6782
Computer artwork showing part of a human or eukaryotic cell. In the middle the nucleus which has a membrane with nuclear pores. Inside the nucleus is the DNA

Background imageRibonucleic Acid Collection: Nucleus and endoplasmic reticulum C015 / 6781

Nucleus and endoplasmic reticulum C015 / 6781
Computer artwork showing part of a human or eukaryotic cell. In the middle the nucleus which has a membrane with nuclear pores. Inside the nucleus is the DNA

Background imageRibonucleic Acid Collection: Ribosome, artwork C015 / 6780

Ribosome, artwork C015 / 6780
Computer artwork of a ribosome. Ribosomes are protein particles that are found in cell cytoplasm. Each ribosome has a large and a small subunit

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C015 / 6775

Animal cell organelles, artwork C015 / 6775
Animal cell organelles. Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C015 / 6778

Animal cell organelles, artwork C015 / 6778
Animal cell organelles. Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C015 / 6777

Animal cell organelles, artwork C015 / 6777
Animal cell organelles. Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Ribosome, artwork C015 / 6774

Ribosome, artwork C015 / 6774
Computer artwork of a ribosome. Ribosomes are protein particles that are found in cell cytoplasm. Each ribosome has a large and a small subunit

Background imageRibonucleic Acid Collection: Nucleus and endoplasmic reticulum C015 / 6772

Nucleus and endoplasmic reticulum C015 / 6772
Computer artwork showing part of a human or eukaryotic cell. In the middle the nucleus which has a membrane with nuclear pores. Inside the nucleus is the DNA

Background imageRibonucleic Acid Collection: Ribosome, artwork C015 / 6769

Ribosome, artwork C015 / 6769
Computer artwork of a ribosome. Ribosomes are protein particles that are found in cell cytoplasm. Each ribosome has a large and a small subunit

Background imageRibonucleic Acid Collection: Nucleus and endoplasmic reticulum C015 / 6768

Nucleus and endoplasmic reticulum C015 / 6768
Computer artwork showing part of a human or eukaryotic cell. In the middle the nucleus which has a membrane with nuclear pores. Inside the nucleus is the DNA

Background imageRibonucleic Acid Collection: Nucleus and endoplasmic reticulum C015 / 6767

Nucleus and endoplasmic reticulum C015 / 6767
Computer artwork showing part of a human or eukaryotic cell. In the middle the nucleus which has a membrane with nuclear pores. Inside the nucleus is the DNA

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0619

Animal cell organelles, artwork C016 / 0619
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, red) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0621

Animal cell organelles, artwork C016 / 0621
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, red) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0620

Animal cell organelles, artwork C016 / 0620
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, orange) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0617

Animal cell organelles, artwork C016 / 0617
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, red) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0618

Animal cell organelles, artwork C016 / 0618
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, orange) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0615

Animal cell organelles, artwork C016 / 0615
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, orange) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0616

Animal cell organelles, artwork C016 / 0616
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, orange) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Iron-regulatory protein bound to RNA C015 / 6691

Iron-regulatory protein bound to RNA C015 / 6691
Iron-regulatory protein bound to RNA, molecular model. Iron regulatory protein 1 (IRP1, purple) bound to a short strand of RNA (ribonucleic acid, pink) that includes iron-responsive elements (IREs)

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0611

Animal cell organelles, artwork C016 / 0611
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, red) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Iron-regulatory protein bound to RNA C015 / 6690

Iron-regulatory protein bound to RNA C015 / 6690
Iron-regulatory protein bound to RNA, molecular model. Iron regulatory protein 1 (IRP1, blue) bound to a short strand of RNA (ribonucleic acid, pink) that includes iron-responsive elements (IREs)

Background imageRibonucleic Acid Collection: DNA hybrid duplex, molecular model

DNA hybrid duplex, molecular model. This model shows a chimeric junction, where a DNA (deoxyribonucleic acid) strand changes from one form to another

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0612

Animal cell organelles, artwork C016 / 0612
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, orange) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0605

Animal cell organelles, artwork C016 / 0605
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, red) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0610

Animal cell organelles, artwork C016 / 0610
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, orange) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0604

Animal cell organelles, artwork C016 / 0604
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, red) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Animal cell organelles, artwork C016 / 0606

Animal cell organelles, artwork C016 / 0606
Computer artwork showing the organelles in a eukaryotic cell. This is an animal cell. Structures include the nucleus (centre, orange) which has a membrane with nuclear pores

Background imageRibonucleic Acid Collection: Influenza virus, artwork C018 / 2894

Influenza virus, artwork C018 / 2894
Influenza virus. Cut-away computer artwork of an influenza (flu) virus particle (virion). In each particles lipid envelope (blue) are two types of protein spike




For sale as Licensed Images

Choose your image, Select your licence and Download the media

"Unraveling the Secrets of Ribonucleic Acid: The Double-Stranded RNA Molecule" In the intricate world of molecular biology, ribonucleic acid (RNA) takes center stage as a vital player in various biological processes. This captivating molecule, often overshadowed by its famous cousin DNA, holds immense potential and complexity. DNA transcription sets the stage for RNA's crucial role. As a double-stranded RNA molecule unwinds, it serves as a template to synthesize single-stranded messenger RNA (mRNA), carrying genetic information from the nucleus to the cytoplasm. A mesmerizing molecular model showcases this elegant dance of transcription. Within bacterial ribosomes, another fascinating aspect unfolds. These cellular factories decode mRNA sequences into proteins through translation—a fundamental process that sustains life itself. Peering into their microscopic world reveals an awe-inspiring view of these tiny machines at work. But not all encounters with RNA are beneficial; some bring about disease-causing agents like human respiratory syncytial virus or paramyxovirus particles. Through electron microscopy, we witness their hauntingly beautiful structures—reminders of nature's delicate balance between beauty and danger. Electrophoresis techniques allow scientists to analyze and separate different types of RNAs based on size and charge—an invaluable tool in unraveling their mysteries. Such experiments reveal intriguing patterns under UV light that hint at hidden secrets within these molecules' structure and function. The realm of RNA extends beyond mere replication; it undergoes editing too. Molecular models showcase specialized enzymes responsible for altering specific nucleotides within an RNA sequence—a testament to nature's ingenuity in fine-tuning genetic information. Ribonucleases further highlight the multifaceted nature of RNAs—their ability to degrade both RNA-DNA hybrids and pure forms with precision is truly remarkable. Visualizing this interaction provides insights into how cells regulate gene expression through controlled degradation mechanisms.