Skip to main content

Transmission Electron Collection (#4)

"Unlocking the Intricacies of Life

Background imageTransmission Electron Collection: Myelinated nerve, TEM C016 / 5448

Myelinated nerve, TEM C016 / 5448
Myelinated nerve. Transmission electron micrograph (TEM) of a section through a myelinated nerve fibre and Schwann cell. Myelin (black)

Background imageTransmission Electron Collection: Myelinated nerve, TEM C016 / 5370

Myelinated nerve, TEM C016 / 5370
Myelinated nerve. Transmission electron micrograph (TEM) of a section through a myelinated nerve fibre and Schwann cell (centre)

Background imageTransmission Electron Collection: Pig retrovirus, TEM C016 / 4246

Pig retrovirus, TEM C016 / 4246
Pig retrovirus. Coloured transmission electron micrograph (TEM) of porcine endogenous retrovirus (PERV) particles (round) in infected tissue

Background imageTransmission Electron Collection: Vesicular stomatitis virus, TEM C016 / 4244

Vesicular stomatitis virus, TEM C016 / 4244
Vesicular stomatitis virus. Coloured transmission electron micrograph (TEM) of a particle of the rhabdovirus vesicular stomatitis virus (VSV). The bullet shape is characteristic of rhabdoviruses

Background imageTransmission Electron Collection: Vesicular stomatitis virus, TEM C016 / 4245

Vesicular stomatitis virus, TEM C016 / 4245
Vesicular stomatitis virus, TEM

Background imageTransmission Electron Collection: Avian influenza virus, TEM C016 / 2354

Avian influenza virus, TEM C016 / 2354
Avian influenza virus, type A strain H7N9, coloured transmission electron micrograph (TEM). This virus first emerged in the human population in China, in March 2013

Background imageTransmission Electron Collection: Avian influenza virus, TEM C016 / 2353

Avian influenza virus, TEM C016 / 2353
Avian influenza virus, type A strain H7N9, coloured transmission electron micrograph (TEM). This virus first emerged in the human population in China, in March 2013

Background imageTransmission Electron Collection: Avian influenza virus, TEM C016 / 2352

Avian influenza virus, TEM C016 / 2352
Avian influenza virus, type A strain H7N9, coloured transmission electron micrograph (TEM). This virus first emerged in the human population in China, in March 2013

Background imageTransmission Electron Collection: Avian influenza virus, TEM C016 / 2351

Avian influenza virus, TEM C016 / 2351
Avian influenza virus, type A strain H7N9, coloured transmission electron micrograph (TEM). This virus first emerged in the human population in China, in March 2013

Background imageTransmission Electron Collection: TEM of Giardia lamblia

TEM of Giardia lamblia
Coloured Transmission Electron Micrograph of Giardia lamblia (orange), a parasitic flagellate protozoan which causes the disease lambliasis (giardiasis)

Background imageTransmission Electron Collection: Lampbrush chromosomes, TEM

Lampbrush chromosomes, TEM
Lampbrush chromosomes. Coloured transmission electron micrograph (TEM) of lampbrush chromosomes (LBCs). A chromosome consists of proteins and DNA (deoxyribonucleic acid)

Background imageTransmission Electron Collection: Mitosis, TEM

Mitosis, TEM
Mitosis, coloured transmission electron micrograph (TEM). Longitudinal section through a human T cell in metaphase. During mitosis two daughter nuclei are formed from one parent nucleus

Background imageTransmission Electron Collection: Collagen fibres, TEM

Collagen fibres, TEM
Collagen fibres. Coloured transmission electron micrograph (TEM) of collagen protein fibres. Collagen has a high tensile strength, providing structure and elasticity to skin, tendons

Background imageTransmission Electron Collection: Pituitary gland, TEM

Pituitary gland, TEM
Pituitary gland. Coloured transmission electron micrograph (TEM) of cells in the anterior pituitary gland, a hormone-secreting gland at the base of the brain

Background imageTransmission Electron Collection: Pancreatic cells, TEM

Pancreatic cells, TEM
Pancreatic cells. Coloured transmission electron micrograph (TEM) of an acinar (exocrine) pancreatic cell (blue) adjacent to an hormone- secreting (endocrine) Islet of Langerhans cell (green)

Background imageTransmission Electron Collection: Duodenal microvilli

Duodenal microvilli
Microvilli in duodenum. Coloured transmission electron micrograph (TEM) of a section through the human duodenum, showing microvilli on the surface epithelium (lining)

Background imageTransmission Electron Collection: Pancreatic cell, TEM

Pancreatic cell, TEM
Pancreatic cell. Coloured transmission electron micrograph (TEM) of part of an acinar (exocrine) pancreatic cell. Mitochondria (red) are seen in the cells endoplasmic reticulum (yellow)

Background imageTransmission Electron Collection: Duodenum secretory cells

Duodenum secretory cells. Coloured transmission electron micrograph (TEM) of a section through the human duodenum, showing secretory cells of the surface epithelium (lining)

Background imageTransmission Electron Collection: Myelin surrounding a nerve axon, TEM

Myelin surrounding a nerve axon, TEM
Myelin surrounding a nerve axon, coloured transmission electron micrograph (TEM). The concentric round rings are the sheets of a Schwann cells myelin membrane (brown rings)

Background imageTransmission Electron Collection: Coloured TEM of a basophil white blood cell

Coloured TEM of a basophil white blood cell
Polynuclear basophil. Coloured Transmission Electron Micrograph (TEM) of a basophil white blood cell. This basophil has one bi-lobed nucleus (yellow, lower centre) and a second nucleus at upper left

Background imageTransmission Electron Collection: Coronary artery, TEM

Coronary artery, TEM
Coronary artery. Coloured transmission electron micrograph (TEM) of a cross-section through the wall of a coronary artery

Background imageTransmission Electron Collection: HIV particles in infected cell, TEM

HIV particles in infected cell, TEM
HIV particles. Coloured transmission electron micrograph (TEM) of human immunodeficiency virus (HIV) particles (orange) in a host cell. HIV causes the disease AIDS

Background imageTransmission Electron Collection: Adenovirus particles and bacterium, TEM

Adenovirus particles and bacterium, TEM
Adenovirus particles and bacterium. Coloured transmission electron micrograph (TEM) of adenovirus particles (green) with a gut bacterium (orange)

Background imageTransmission Electron Collection: Colour TEM of a cluster of five influenza viruses

Colour TEM of a cluster of five influenza viruses
Influenza virus. Coloured transmission electron micrograph of a cluster of five spherical-shaped influenza (flu) viruses. Each virus is made up of a core of ribonucleic acid (RNA, not seen here)

Background imageTransmission Electron Collection: Nerve fibre node, TEM

Nerve fibre node, TEM
Nerve fibre node. Coloured transmission electron micrograph (TEM) of a cross-section through a nerve fibre (axon) at a node of Ranvier

Background imageTransmission Electron Collection: Neutrophil and trapped bacteria, TEM

Neutrophil and trapped bacteria, TEM
Neutrophil and trapped bacteria. Coloured transmission electron micrograph (TEM) of Neisseria gonorrhoeae bacteria (blue) trapped by a neutrophil (orange), a type of white blood cell

Background imageTransmission Electron Collection: Immunoglobulin G antibodies, TEM

Immunoglobulin G antibodies, TEM
Immunoglobulin G antibody molecules, coloured transmission electron micrograph (TEM). IgG is the most abundant human immunoglobulin, and is found in all body fluids

Background imageTransmission Electron Collection: Blood platelet, TEM

Blood platelet, TEM

Background imageTransmission Electron Collection: Colour TEM of red blood cells, rouleau formation

Colour TEM of red blood cells, rouleau formation
Red blood cells. Coloured Transmission Electron Micrograph (TEM) of sectioned human red blood cells (erythrocytes) in a rouleau formation

Background imageTransmission Electron Collection: AIDS viruses budding from T-cell

AIDS viruses budding from T-cell
AIDS viruses. Coloured transmission electron micrograph (TEM) of rounded Human Immunodeficiency viruses (HIV) budding from the surface of an infected T-lymphocyte blood cell (T-cell)

Background imageTransmission Electron Collection: Polyoma viruses

Polyoma viruses. Coloured transmission electron micrograph (TEM) of polyoma viruses. These simian (monkey) viruses (SV40) are a type of papovavirus

Background imageTransmission Electron Collection: West Nile viruses

West Nile viruses. Coloured transmission electron micrograph (TEM) of a group of West Nile viruses (WNV). This virus is known to cause encephalitis in humans




For sale as Licensed Images

Choose your image, Select your licence and Download the media

"Unlocking the Intricacies of Life: Exploring the Microscopic World through Transmission Electron Microscopy (TEM)" Delving into the depths of cellular structures and biological processes, transmission electron microscopy (TEM) has revolutionized our understanding of various aspects of life. With its high-resolution imaging capabilities, TEM allows us to witness intricate details that were once hidden from our sight. At synapse nerve junctions, TEM reveals a mesmerizing dance between neurotransmitters, enabling communication between neurons with remarkable precision. Norovirus particles come alive under TEM's lens, showcasing their unique shape and arrangement – a crucial insight in combating these notorious pathogens. E. Coli bacteria appear as tiny rods when observed through TEM, reminding us of their omnipresence in nature and sometimes unfortunate encounters in human health. Fat cells take on an unexpected beauty when magnified by TEM; their delicate structure resembling a web-like network that stores energy for our bodies. The myelination process is brought to life through TEM images capturing nerve fibers coated with protective sheaths. These stunning visuals help unravel the mysteries behind efficient neural signaling and hold promise for treating demyelinating diseases such as multiple sclerosis. TEM exposes the menacing presence of MRSA-resistant Staphylococcus bacteria – formidable adversaries in healthcare settings worldwide. Another glimpse at E. coli bacterium showcases its intricate internal machinery responsible for vital functions within this single-celled organism. Nerve cells reveal their complexity under TEM's scrutiny – branching dendrites reaching out like tree branches while axons transmit electrical signals across vast distances. Mitochondria steal the spotlight as they power these nerve cells' activities, appearing as dynamic organelles teeming with energy-producing potential. Plasma cells burst forth with vibrant colors when examined using TEM; their role in producing antibodies becomes even more awe-inspiring upon closer inspection. Once again, myelinated nerve fibers captivate us with their elegant architecture – a testament to nature's ingenuity in optimizing neural communication.